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SUMMARY

In this paper, a new immersed-boundary method for simulating �ows over complex immersed, moving
boundaries is presented. The �ow is computed on a �xed Cartesian mesh and the solid boundaries are
allowed to move freely through the mesh. The present method is based on a �nite-di�erence approach on
a staggered mesh together with a fractional-step method. It must be noted that the immersed boundary is
generally not coincident with the position of the solution variables on the grid, therefore, an appropriate
strategy is needed to construct a relationship between the curved boundary and the grid points nearby.
Furthermore, a momentum forcing is added on the body boundaries and also inside the body to satisfy
the no-slip boundary condition. The immersed boundary is represented by a series of interfacial markers,
and the markers are also used as Lagrangian forcing points. A linear interpolation is then used to
scale the Lagrangian forcing from the interfacial markers to the corresponding grid points nearby. This
treatment of the immersed-boundary is used to simulate several problems, which have been validated
with previous experimental results in the open literature, verifying the accuracy of the present method.
Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

How to handle complex geometries has been one of the main challenges in computational �uid
dynamics because most engineering problems have complex geometries. So far, two traditional
techniques have been developed: using the unstructured grid for �nite volume method and the
coordinate transformations and mapping techniques for �nite di�erence method. The use of
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coordinate transformations and mapping techniques is possible but requires a highly accurate
way of calculating the transformation Jacobians, and even for simple geometries, generating
a good-quality body-conformal grid can be an iterative process requiring signi�cant devotion
of the time. As the geometry becomes more complicated, the task of generating an acceptable
grid becomes increasingly di�cult. The unstructured grid approach is inherently better suited
for complex geometries, but here, grid quality can deteriorate with increasing complexity in
the geometry. As an alternative solution, the immersed boundary method (IBM) was then
developed, and the main advantages of this method are memory and CPU savings and easy
grid generation. Grid complexity and quality are not signi�cantly a�ected by the complexity of
the geometry. Even moving-boundary problems can be handled with the immersed-boundary
method without regenerating grids in time, unlike the unstructured grid and body-�tted grid
methods.
Peskin [1] developed a method that represents a body within a �ow �eld via a forcing term

added to the governing equations. If carefully selecting the points where the forcing term is ap-
plied, the forcing term can simulate the e�ect of the body on the �ow, allowing the modelling
of an arbitrary-shaped boundary within a Cartesian computational box without the necessity of
mapping. Peskin [2–5] successfully implemented this immersed boundary technique to model
moving boundaries in heart valve simulations. The main advantage of this scheme lies in its
ability to model the material properties of the body and movement of the boundaries. How-
ever, numerical sti�ness of most moving boundary problems restricts the explicit de�nition
of the forcing term in Peskin’s method to small time steps. Goldstein et al. [6] developed a
virtual boundary method (VBM) that employed a forcing term governed by a feedback loop.
However, the feedback forcing induced spurious oscillations, restricted the computational time
step associated with numerical stability. For instance, Goldstein [6] used a very small time
step equivalent to a CFL (Courant–Friedrichs–Lewy) number of O(10−3–10−2) when they
simulated the start-up �ow around a circular cylinder. As reviewed by Mittal et al. [7], this
category of methods is termed ‘continuous forcing approach’, in which the forcing is incorpo-
rated into the continuous equations before discretization. The continuous forcing approach is
very attractive for simulating the �ow with elastic boundaries, and has a sound physical basis.
However, using this approach for �ows with rigid bodies poses some challenges associated
with the fact that the forcing terms are generally not well behaved in the rigid limit.
Recently, Mohd-Yusof [8] suggested a di�erent approach to evaluating the momentum forc-

ing in a spectral method, and his method does not require a small computational time step,
which is an important advantage over previous methods. Fadlun et al. [9] applied the ap-
proach of Mohd-Yusof [8] to a �nite-di�erence method on a staggered grid and showed that
the discrete-time forcing suggested by Mohd-Yusof [8] is more e�cient than feedback forcing
for three-dimensional �ows. The discrete form of the forcing can be written as

fi;j=
u� − uni;j
�t

− RHS (1)

where �t is the time step, and RHS contains the convective, viscous and pressure terms of
the governing equations. According to Fadlun et al. [9], the velocity at the �rst grid point
external to the body is obtained by linearly interpolating the velocity at the second grid
point, which is obtained by directly solving the Navier–Stokes equations, and the velocity
at the body surface. The method is straightforward, second-order accurate, and works well
for bodies that are largely aligned with the grid lines. For geometrically complex immersed
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boundaries, however, the choice of the reconstruction direction may not be unique, because of-
ten more than one grid line passing through a near-boundary node may intersect the boundary.
A multi-dimensional scheme aimed at removing this arbitrary element in the implementation
of hybrid formulations was proposed by Kim et al. [10]. This scheme uses a bilinear recon-
struction procedure, which is reduced to one-dimension when there are no available points in
the vicinity of the boundary to support the two-dimensional stencil. Fadlun et al. [9] and Kim
et al. [10] treat immersed boundaries with reconstruction procedure that reevaluate the veloc-
ities on grid points (Eulerian points) near the boundaries, and the added momentum forcing
is calculated on these grid points. These reconstruction treatments have also been applied by
Tseng et al. [11], Gilmanov et al. [12] and Balaras [13]. These methods fall into a second
category, which is termed ‘discrete forcing approach’. The forcing procedure is intimately
connected to the details of the discretization approach and practical implementation is not as
straightforward as the continuous forcing approach. However, discrete forcing enables a sharp
representation of the IB, and this is desirable, especially at higher Reynolds numbers.
The discrete forcing approach is more accurate and e�cient, and the key problem for these

studies is the interpolation approach described in Reference [9]. Other revised interpolation
schemes have also been developed [14]. The immersed-boundary method is in general accom-
plished by modifying the computational stencil near the immersed boundary to impose the
boundary condition on the IB, and to maintain a ‘sharp’ interface, where the local accuracy of
the solution assumes greater importance, and the spreading of the e�ect of the IB introduced by
the smooth force distribution function that often used in the continuous forcing approach is less
desirable. The trend for the development of IBM is more complicated interpolation schemes
and more grid points involved for the calculation of the forcing term, with the result that the
modi�cation of the computational stencil near the IB becomes more and more complicated.
If the IB is simple and has a straightforward mathematical expression, then the interpola-

tion procedure is relatively easy, we can �nd the grid points for interpolation directly. But
if the immersed boundary, especially the three-dimensional immersed surface of the body,
is expressed by a set of discrete points, then the reconstruction procedure near the IB using
traditional method is di�cult and the choice of the reconstruction direction is di�cult to deter-
mine. This is also the reason for that the using of the IBM is limited. We will develop a new
version of IBM, which has a robust ability to deal with arbitrary and complex con�gurations,
and at the same time can keep the overall accuracy of the scheme. To verify the accuracy of
the present method, we will simulate four di�erent �ow problems.

2. NUMERICAL METHODS

2.1. Governing equations

Viscous and incompressible �ows in a Cartesian square domain containing immersed bound-
aries can be modelled by the following Navier–Stokes equations, in which F(i; j) is the
Eulerian forcing on the grid points, and this forcing is not equal to zero only over the
immersed boundary

@V
@t
+ (V · ∇)V=−∇P + 1

Re
∇2V+ F (2)

∇ ·V=0 (3)
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2.2. Immersed boundary treatment

A general treatment to mimic the immersed boundary (IB) is to replace the IB with a set of
discrete control points xk (Lagrangian points). The Lagrangian forcing f(xk) are calculated
over these control points, and are spread to the nearby Cartesian grid points by a certain dis-
tribution function (in general a discrete delta function), so that it yields non-zero forcing term
F(i; j) at grid points near the interface. After the spreading process, the internal boundaries
have been well handled and the �uid equation can be solved by a general �nite di�erence
method.
The calculation method for the Lagrangian forcing is developed from the Physical Virtual

Model (PVM) originally proposed by Silva et al. [15]. The main idea we follow PVM is that
the added forcing has been calculated explicitly, and is broken into di�erent terms, then each
term has a clearly physical meaning. Furthermore, PVM is based on the calculation of the
forcing �eld over a sequence of pre-assigned Lagrangian points, which represent the immersed
boundary. Since only a small part of these points are identi�ed to have a direct relationship
with the nearby grid points that have been used, we have no need to calculate the forcing on
all control points.

2.3. Added force �eld

The Lagrangian forcing is calculated based only on the momentum equation. All the
Navier–Stokes terms are calculated over the Lagrangian points. Therefore the forcing f(xk)
should be expressed by

f(xk)= fa(xk) + fi(xk) + fv(xk) + fp(xk) (4)

The di�erent terms that compose Equation (4) are here taken apart as acceleration forcing
fa(xk), inertial forcing fi(xk), viscous forcing fv(xk) and pressure forcing fp(xk). These forcing
components are represented by

fa(xk) =
@V
@t
(xk) (5)

fi(xk) = (V · ∇)V(xk) (6)

fv(xk) =− 1
Re

∇2V(xk) (7)

fp(xk) =∇P(xk) (8)

The velocity and pressure spatial derivatives in terms described by Equations (5)–(8) must
be evaluated over the Lagrangian point xk on the immersed boundary and the surrounding
virtual points 1–4 as shown in Figure 1, in which the distances between the points xk and 1,
xk and 2, xk and 3, xk and 4 are h (the mesh size). One of the possible ways to obtain the
velocity and pressure values on these �ve points is to interpolate from the surrounding grid
points that enclose the Lagrangian point or virtual points in a grid box. In our procedure,
a standard bilinear interpolation is used. When calculating the acceleration force component
denoted by Equation (5), we should notice that the �uid velocity at next time step must
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Figure 1. Illustration of a Lagrangian point with surrounding virtual points.

be equal to the no-slip boundary’s velocity. Furthermore, in three-dimensional problems, six
virtual points should be created instead.

2.4. Interface description

An important step in a proper distribution of the forcing function is the description of the
topology of the boundary. We use a method similar to that proposed by Udaykumar et al.
[16, 17], in which the �uid=solid interface is tracked as a discontinuity. This method has been
also adopted by Balaras [13] recently. This interface tracking methodology has been suggested
to be very robust and has been applied to a variety of problems in the context of a Cartesian
grid method. In the following paragraphs, new strategies, based on this methodology, will be
introduced to facilitate the present implementation of IBM, especially for three-dimensional
cases.
An immersed solid boundary, �, of arbitrary shape (open or closed) is represented by a

series of interfacial markers de�ned by the global coordinates X(k) or the local coordinates
Xb(k), whose origin point is located at the geometrical centre of the immersed body, as
shown in Figure 2. The markers are also used as the Lagrangian forcing points, as have
been mentioned above in Section 2.2. The markers are compactly spaced with spacing much
smaller than the local grid size. The sequence of the markers is de�ned in a way that as
the observer moves toward increasing the serial number k, the solid is always to the left.
Referring to Figure 2, the global coordinates for each marker point is X(k)= x(k) + i · y(k),
where i denotes the square root of −1. Based on this de�nition, the normal from any point
on the interface to the �uid can be computed in a straightforward manner through the two
neighbours (k − 1) and (k + 1). The normal vector is deduced as

Tk = x(k + 1)− x(k − 1) + i · (y(k + 1)− y(k − 1))
Nk =Tk · (−i)=y(k + 1)− y(k − 1) + i · (x(k − 1)− x(k + 1))

(9)

where Tk denotes the vector at the tangent on the interface, and the normal vector can be
obtained by rotating the tangent vector clockwise. In three-dimensional problems, the sequence
of the markers is de�ned by two sets of serial number k and l, with the vector l×k pointing

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1195–1213



1200 J. DENG, X.-M. SHAO AND A.-L. REN

Figure 2. Description of the boundary topology with interface markers,
left: 2D problem; right: 3D problem.

to the �uid phase (Figure 2). The normal vector is deduced as

Nk = l×k

=

∣∣∣∣∣∣∣∣
x1 x2 x3

x(k; l+ 1)− x(k; l− 1) y(k; l+ 1)− y(k; l− 1) z(k; l+ 1)− z(k; l− 1)
x(k + 1; l)− x(k − 1; l) y(k + 1; l)− y(k − 1; l) z(k + 1; l)− z(k − 1; l)

∣∣∣∣∣∣∣∣
(10)

where x1, x2 and x3 are the base vectors in Cartesian coordinates, in three base directions,
respectively.

2.5. Identi�cation of forcing points

Given the above interface description, for each grid point, (i; j), near the interface, we can
identify the closest marker point, (k), through a search process. In order to know which of
these grid points belong to the �uid and which to the solid phase, we create a vector [ from
the maker point to a corresponding grid point. To associate this vector with the normal vector
Nk at the marker point, the scalar product �= [ · Nk then can be evaluated. If � ¿ 0, then
the point belongs to the �uid phase, whereas if � 6 0 it belongs to the solid phase. If the
point belongs to the �uid phase and the distance between the grid point and the corresponding
marker point is less than h, the grid point is tagged with a +1 �ag. Whereas, if the point
belongs to the solid phase, the grid point is tagged with a −1 �ag. All other points have the
default, zero �ag. There, h=

√
(dx)2 + (dy)2 + (dz)2, denotes the diagonal length of the grid

box. Then
For the grid point tagged with a +1 �ag, a linear interpolation F(i; j)= (1− ds=h)f(xk) is

used to scale the Lagrangian forcing on a related marker to this grid point, where ds is the
distance between the grid point with the related marker point, as shown in Figure 3. This
distribution function looks very simple, however, this treatment is proved to be accurate and
robust in dealing with complex con�gurations with moving boundaries. The added forcing
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Figure 3. Distribution of the forcing from the immersed boundary to the grid points.

is also calculated inside the body, and this treatment brings the solution to the convergence
more quickly.

2.6. The Cartesian grid solver

For the solution of Equations (2) and (3) a second-order projection method is employed.
The di�usion terms are advanced by the Crank–Nicolson scheme and the remaining terms
are advanced explicitly using an Adams–Bashforth scheme. In the framework of a two-step
time-splitting method, �rst, a provisional value of the velocity �eld, which is not divergence
free, can be obtained

u∗ − un
�t

+
[
3
2
H (un)− 1

2
H (un−1)

]
= −Gpn+1 + 1

2Re
L(un + un+1) + Fn+1 in � (11)

u∗= bn+1 on � (12)

where � is the computational domain and � is the boundary of �. bn+1 are the values of
the velocities on � and bn+1 is given. H is the discrete advection operator, G the discrete
gradient, L the Laplace operator. Fn+1 is a forcing term that must be determined in advance in
a way that un+1 satis�es the desired boundary conditions on an arbitrary boundary immersed
in �. The provisional velocity �eld u∗ can be split into a solenoid �eld un+1, which is the
�nal unknown, and the gradient of a scalar

un+1 = u∗ −�t∇� (13)

pn+1 =pn + �− �t
2Re

∇2� (14)

and

∇ · un+1 = 0 in � (15)

n · un+1 = n · bn+1 on � (16)
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The projection is realized by solving the following Poisson equation:

∇2�=
∇u∗

�t
in � (17)

Boundary conditions for this equation can be derived from the component of Equation (13)
normal to the boundary. For the case of a Dirichlet boundary, a consistent boundary condition
for the pressure correction � can be obtained introducing (12) and (16) into (13)

∇� · n=0 on � (18)

The Poisson equation (17) for the pressure correction is solved using pre-conditioned conju-
gate gradient method [18]. All spatial derivatives are approximated with second-order central
di�erences on a staggered grid.

3. NUMERICAL TESTS

3.1. A circular cylinder immersed in a lid-driven cavity

In the original approach by Fadlun et al. [9], the velocity components at the �rst grid point
o� the IB are determined using a linear interpolation formula rather than the discretized
Navier–Stokes equation. The method is equivalent to assuming a one-dimensional linear ve-
locity pro�le near the boundary. Other interpolation methods have also been developed, for
example, revised linear interpolation method (RLIM), quadratic interpolation method (QIM),
and quadratic + momentum interpolation method (QMIM), as concluded in Reference [14].
Although the e�ect of the local pressure gradient has been accounted for by using a few
additional corrections, the pressure �eld is still discontinued, therefore, the local error can
be accumulated in the pressure �eld near the IB. This drawback is especially not suited for
moving boundary problems. In this paper, we actually assume a one-dimensional linear added
forcing pro�le near the boundary, and the pressure near the IB is coupled in by explicitly
calculating the added forcing.
In order to investigate the accuracy of di�erent IB treatments, we present an analysis of the

variation of solution error with grid re�nement. This study is performed for the case where a
circular cylinder is immersed in a lid-driven cavity. The cylinder of diameter D=0:5 units is
placed at the centre of the cavity of dimension 1.0 units. The �ow for this immersed boundary
problem is simulated using our general solver integrating with the revised linear interpolation
method (RLIM) [14], and the new treatment as well, with the Reynolds number (with respect
to the dimension of cavity) Re=10. The �ow �eld can be visualized from Figure 4(a), and
the y-component of added forcing in shown in Figure 4(b). The following sequence of grid
sizes is employed in performing the error analysis: 34× 34, 68× 68, 130× 130, and 258× 258
grid points. In the absence of an exact analytical solution to this �ow problem, the results on
the 258× 258 mesh is taken to be the ‘exact’ solution in order to obtain the error distribution
for each of the coarser meshes. Both the L1 and L2 norm of the global error and the maximum
error are evaluated. The expressions for L1 and L2 norm are

�1 =
1

NxNy

NxNy∑
j=1

|	numericalj −	exactj | and �2 =

(
1

NxNy

NxNy∑
j=1
(	numericalj −	exactj )2

)1=2
(19)
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Figure 4. (a) Streamlines for a cylinder in a lid-driven cavity computed on the 130× 130
mesh; and (b) forcing �eld of Fy for 130× 130 mesh.
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Figure 5. Norm error and maximum error in the u-component of velocities: (a) L1 norm of the
global error: – –, RLIM, – –, Present method; L2 norm of the global error: –N –, RLIM, –M –,

Present method; and (b) maximum error: – –, RLIM, – –, Present method.

We show a log–log plot of the errors in velocity component u versus mesh size h in Figure 5,
and the errors in pressure in Figure 6, respectively. Also shown are two lines with a slope of
−2 and a slope of −1 that correspond to second-order accurate convergence and �rst-order
accurate convergence, respectively. The plot clearly shows that the IBM based on the RLIM
shows �rst-order accuracy in space, whereas the IBM based on the present treatments shows
second-order accuracy both in velocity �eld and pressure �eld. This test therefore proves that
the current approach results in a solver which is second-order accurate. However, we note
that exact second-order-accuracy is not expected in this test primarily because the errors are
not computed based on an exact solution. The results suggest that even a simple distribution
of the Lagrange forcing over the IB can lead to a second-order spatial accuracy.
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Figure 6. Norm error and maximum error in the pressure: (a) L1 norm of the global error: – –,
RLIM, – –, Present method; L2 norm of the global error: –N –, RLIM, –M –, Present method;

and (b) maximum error: – –, RLIM, – –, Present method.

3.2. Uniform �ow around a circular cylinder

Next, we simulate a uniform �ow around a circular cylinder, to demonstrate the accuracy of
this method to predict the hydrodynamics forces on an obstacle immersed in a current. Once
the added force have been calculated, the drag and lift coe�cient can be calculated directly
by an integral of the Eulerian force in the domain [15]. It has been known that the drag and
lift forces on an immersed body in a stream, arise from two sources: the shear stress and the
pressure distribution along the body, so we can also calculate the drag and lift force from the
velocity and pressure interpolated from the �ow �eld.
A rectangular domain is used. The boundary conditions are imposed in such a way that

the �ow is from the left toward the right of the domain. The circular cylinder is placed
inside the domain, with its centre 8D away from the inlet, 15D from the outlet, 8D from
the top boundary, and 8D from the bottom boundary (D denotes the cylinder diameter).
A non-re�ect boundary condition is applied on the outlet. A uniform constant velocity is
speci�ed at the domain entrance, as well as at the top boundary and bottom boundary. The
uniform mesh size is 0.05. Several cases of Reynolds number are considered. The Reynolds
number in this �ow is de�ned based on the uniform in�ow velocity and the cylinder diameter.
A time step �t=0:01 is used for all the cases. For Reynolds number below Re=47 the wake
formed behind the cylinder attains a steady symmetric state, which is in agreement with the
well-established result by the linear stability theory. The cylinder wake instabilities rises for
Re=47.
The length of the wake bubble S=D is here de�ned as the distance between two stagnation

points downstream of the cylinder, as illustrated in Figure 7, as an illustration at Re=30.
For di�erent values of Reynolds number the length of wake bubble is presented in Table I.
Comparisons of the present results to those of other authors (Teneda [19] and Takami [20])
demonstrate good agreement. The comparison of the drag coe�cient, obtained in the present
work, with other numerical and experimental results, is presented in Table II. Very good
agreement has also been obtained. Furthermore, we show the pressure coe�cient on the
cylinder surface as a function of the angle � in Figure 8. The results �t well with that
obtained by Silva et al. [15], which is also included in this graph.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1195–1213



NEW MODIFICATION OF THE IMMERSED-BOUNDARY METHOD 1205

Figure 7. Wake streamlines at Re=30.

Table I. Length of the wake bubble for di�erent Reynolds number.

Reynolds number 20 25 30 40 42

S=D Teneda [19] — 1.150 1.490 2.200 2.350
Takami [20] 0.935 — 1.612 2.325 —
Present work 0.962 1.285 1.605 2.220 2.347

Table II. Comparison of mean drag coe�cient (Cd) with those of other authors.

Reynolds number 10 20 40 50 80 100 300

Triton [21] — 2.22 1.48 — 1.29 — —
Dennis et al. [22] — 2.05 1.52 — — 1.06 —
Fornberg [23] — 2.00 1.50 — — — —
Park et al. [24] 2.78 2.01 1.51 — 1.35 1.33 —
Silva et al. [15] 2.81 2.04 1.54 1.46 1.40 1.39 1.27
Present work 2.98 2.06 1.52 1.42 1.32 1.30 1.26

3.3. Flow around a transversely oscillating cylinder

In this section, we will examine the �ow around a transversely oscillating cylinder. The
computational domain and grid used for the current simulations are the same with the last
case. A uniform free stream velocity is prescribed on the in�ow (left), top, and bottom
boundaries. The non-re�ect boundary condition is employed at the exit (right) boundary. The
cylinder sinusoidally oscillates such that the location of its centre (xc; yc) is given by xc(t)= x0,
yc(t)=y0+A sin(2�fct). A is the amplitude and fc is the frequency of the oscillation, and all
the variables have been non-dimensionalized. The cylinder is immersed and oscillates through
the �xed, uniform, Cartesian mesh.
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Figure 8. Pressure coe�cient distribution, between the stagnation point (�=0) and the base
point (�=180): (a) schematic illustration of the angle �; and (b) solid line, Re=40, dashed

line, Re=20 (present study); symbol , Re=40, ©, Re=20 [15].

Figure 9. Lift and drag coe�cients time history at Re=200.

In all simulations presented in this case, Re=200. Lift and drag coe�cients are shown in
Figure 9, for the case of a �xed circular cylinder at the Reynolds number equal to 200.
A good agreement is obtained in comparison with simulations using other methods, e.g.
discrete vortex method as in Reference [25]. The average drag coe�cient is approximately
1.28, slightly higher than Bearman’s result, where a value of 1.23 was found. Fourier analysis
of the �uctuating lift yields a Strouhal number (fsD=U ) of about 0.195, which matches well
with the experiments by Williamson [26], who obtained a Strouhal number of 0.197, and also
the numerical result of 0.196 from Reference [25].
It has been known that Vortex shedding ‘lock-on’ is a classical phenomenon that is observed

in the wake of an oscillating cylinder and refers to the situation where the frequency of vortex
shedding in the wake synchronizes with or locks on to the frequency of forced perturbation.
Inside the ‘lock-in’ region, for small amplitudes of oscillation (A=D¡0:6), �ow visualizations
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Figure 10. Wake structure for fc=fs = 0:8: (a) A=D=0:55 present numerical results;
(b) A=D=0:55 from experiment [27]; (c) A=D=0:65 present numerical results;

and (d) A=D=0:65 from experiment [27].

Figure 11. Cd, Cl and yc=D time history for: (a) A=D=0:2, fc=fs = 1:1; and
(b) A=D=0:05, fc=fs = 1:025.

show two vortices of opposite circulation shed per cycle as in a conventional Karman vortex
street. This kind of synchronization has been called ‘primary lock-in’. For large amplitudes
of oscillation, A=D greater than about 0.6, the wake presents a di�erent mode of shedding,
where two vortices of opposite circulation are shed on one side of the wake and a single
vortex is shed on the other side. In the current study, two simulations have been carried
out at �xed forced frequency fc=fs = 0:8, A=D=0:55 and 0.65. The contours of vorticity are
shown in Figure 10, according well with the results by Bearman et al. [25]. The wake mode
in Figure 10(b) is generally called ‘P + S’ mode. Furthermore, time history of the drag and
lift coe�cients as well as the cylinder displacement is shown in Figure 11. The results for
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a frequency of oscillation with fc=fs = 1:1 and A=D=0:2 are shown in Figure 11(a), in which
the beating behaviour is observed. In Figure 11(b), with fc=fs = 1:025 and A=D=0:05, the
phase shift between the lift oscillation and cylinder displacement is about 12◦, which is also
found out by Bearman et al. [25].

3.4. Three-dimensional simulation of a swimming �sh

Several theories have been developed to explain �sh swimming performance. Many previous
researchers investigated the �exible two-dimensional and three-dimensional plates using lin-
earized potential �ow theory, instead of real �shes. Although these works provide insight into
the basic swimming propulsive mechanics, the details of the three-dimensional �ow and the
dynamics of the shed vortices are still not well understood. Since the complex con�guration
of the body and the undulation of the tail �n, direct experimental dynamics measurements of
the three-dimensional structure in the wake of the swimming �sh are di�cult to obtain, and
the direct numerical simulations are also di�cult to carry out.
Anderson [28] used experimental digital particle image velocimetry (DPIV) to visualize the

wake behind a swimming giant danio (Danio malabaricus) and identi�ed the active manipula-
tion of shed wake vorticity to create a reverse Karman vortex street. Wolfgang [29] developed
a computational tool for investigating the swimming characteristics of a three-dimensional �ex-
ible body. With the exception of the wake, the �uid is assumed to be inviscid and irrotational,
as well as incompressible, allowing for the existence of a velocity potential. However, this
kind of numerical methods is a simpli�cation of the real �ow. In this paper, we will rehandle
this problem by simulating the full N–S equations.
The computational body geometry is chosen that includes the main portion of the body

and the caudal �n (Figure 12), with the smaller dorsal and anal �ns left out of account. The
main body sections are assumed to be elliptical with a major-to-minor axis ratio of AR=2:2,
where the major axis corresponds to the height of the body. A curve-�tting technique if used
to determine the pro�le shape of the body with L=1:0, and is given by

z(x) =p(x)± 0:1525 tanh(6x + 1:8) for − 0:36 x 6 0:1 (20)

z(x) =p(x)± [0:075− 0:076 tanh(6:3x − 3:08)] for 0:16 x 6 0:7 (21)

p(x) = 0:195 tanh[−(0:3 + x)=0:15] + 0:195 (22)

where z(x) is the vertical coordinate along the length of the body, p(x) is the vertical co-
ordinate of the mean line along the length of the body. The caudal �n is assumed to have
chordwise sections of NACA 0012 shape, and the caudal �n leading-edge and trailing-edge
pro�les for the semi-span are also determined through a curve-�tting technique. The pro�les
are given simply by

x(z)LE = 39:543z3 − 3:685z2 + 0:636z (23)

x(z)TE =−40:74z3 + 9:666z2 − 0:15z + 0:1075 (24)

where x(z)LE and x(z)TE are the longitudinal coordinate of the leading and trailing edges,
respectively, along the span of the �n, and where 06 z 6 0:15. The leading edge of the tail
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Figure 12. The surface makers chosen for the main body of a giant danio and the dorsal �n.

at midspan intersects the posterior end of the body’s contraction region, or the region of the
body which narrows in cross-sectional area anterior to the caudal peduncle. The description
of the motion is curve-�tted to be purely sinusoidal and to consist of a smooth amplitude-
modulated travelling wave along the body length with constant phase speed for a constant
swimming speed. The imposed transverse motion y(x; t), with x measure from the nose, has
the form

y(x; t)= a(x) sin
(
2�
(
1
�
x − f · t

))
(25)

where a(x) is the amplitude envelope, given the form of a quadratic function

a(x)= c1x + c2x2 (26)

where c1 and c2 are adjustable coe�cient, as described by Barrett et al. [30], and are chosen
to achieve a speci�c shape of the amplitude envelope a(x) along the length of the body and
a speci�c value of the double amplitude of motion A at the tail. The wake Strouhal number
is given by

St=fA=U (27)

where f is the oscillation and A is the total mean lateral excursion of the tail �n. Our
computational parameters are employed to investigate the straight-line swimming of the giant
danio, and two typical sets of parameters are chosen for simulations, speci�cally: the Reynolds
number Re=600; swimming speed U =1:0 l s−1; backbone wavelength �=1:1 l; tail-beat fre-
quency f=0:8Hz and f=2:5Hz; tail-tip double amplitude A=0:16 l and A=0:4 l; Strouhal
number St=0:128 and 1.0.
Figure 13 illustrates the thrust jet region and the near-body �ow dynamics by showing the

pressure contours at midbody depth. The present results show a qualitative agreement with the
results by Wolfgang et al. [29], and not be quantitative, because di�erent numerical methods
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Figure 13. Pressure coe�cient contours at midplane depth (z=0:5H , where H is �sh body maximum
total depth): (a) the black regions in the wake are low pressure, and the corresponding St=0:45
[29]; and (b) the white regions are high pressure, and the black regions are low pressure, and the

corresponding St=1:0 (in present work).

are employed, and also due to the di�erent beat amplitudes that we have chosen. In this paper,
we simulate the full N–S equations, including the viscous terms. A high-pressure region is
observed near the front part of the �sh body, and a corresponding low-pressure region in
the opposite side of the body. The vortical patterns behind the swimming �sh are shown in
Figure 14. These two pictures are similar to the results reviewed by Triantafyllou et al. [32]
behind a rectangular foil with AR=3. For low Strouhal number, the patterns resemble irregular
rings, or ‘pancakes’, and the rings are joined one by one behind the �sh body, and this is
similar to the �ow wake behind a sphere [33]. When considering the �ow around a sphere,
we also call the rings hairpins vortices. For high Strouhal number, as shown in Figure 14(b),
the vortical patterns evolve in a signi�cantly di�erent way: Two distinct branches appear,
drifting away from each other. The interconnections are not simple, but distinct ring-like
structures form, which in a vertical planar cut, near the centre-plane, would, appear as four
major vortices per cycle. In the far wake of the �sh body, the vortices become very weak,
leading to the disappearance of the ring-like structures, the �ow �eld is characterized by four
stable fourfold-threads vortical structures in the far downstream wake. This indicates that the
energy generated by the oscillation of the �sh body, especially by the caudal �n, will be
dissipated in the far wake of the �sh body.
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Figure 14. Vortical patterns in the wake of a swimming �sh at di�erent Strouhal numbers, and the
patterns in the �ow are iso-surfaces of the �2 eigenvalue [31]: (a) St=0:128; and (b) St=1:0.

4. CONCLUSIONS

A new modi�cation of the immersed-boundary method is developed which allows us to sim-
ulate unsteady, viscous incompressible �ows with complex immersed and moving boundaries.
The underlying method is based on a staggered arrangement of variables. A second-order cen-
tral di�erence scheme is used for spatial di�erencing. Furthermore, the solution is advanced in
using a two-step fractional-step scheme. The immersed boundary is represented by a series of
interfacial markers. The Lagrangian forcings are calculated on these markers, and then scaled
to the grid points nearby through a linear distribution.
The present solver is used to simulate three problems. First, a circular cylinder immersed

in a lid-driven cavity is tested to con�rm the second-order accuracy of this solver. Second,
simulations of �ow past a circular cylinder in a uniform stream are performed with the
Reynolds number ranging from 20 to 300. Key results such as mean drag coe�cient, length
of recirculation zone, obtained from our simulations agree well with established experimental
and numerical results. Third, the �ow past a transversely oscillating cylinder is investigated.
We �nd that the solver is able to simulate the moving boundary problems conveniently without
any modi�cation of the codes for �xed boundary. At last, we carry out a numerical study of
the �ow around a swimming �sh. The main advantage of the current approach is that �ows
with extremely complex internal boundaries can be simulated with relative ease on simple
Cartesian meshes.
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